

4.217 PROSEMINAR IN DESIGN & COMPUTATION
TURING MACHINES

OBJECTIVE: DEFINE THE LIMIT OF "COMPUTABLE" & "UNCOMPUTABLE"

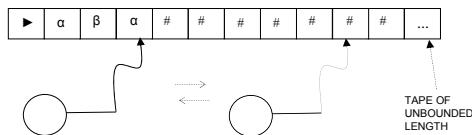
A GENERAL- PURPOSE COMPUTATIONAL MODEL EQUIVALENT IN POWER TO PROGRAMMING LANGUAGES, THAT IS SIMPLE ENOUGH FORMALLY SO THAT WE CAN PROVE WHAT CANNOT BE COMPUTED

REFERENCE PAPERS:

- A. M. TURING, "ON COMPUTABLE NUMBERS WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM" (1936)
- D. HILBERT, "MATHEMATICAL PROBLEMS", (1900)
- K. GODEL, "ON FORMALLY UNDECIDABLE PROPOSITIONS" (1931)

1

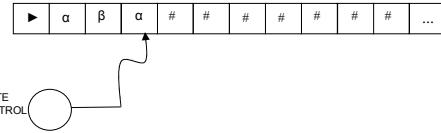
THE BASIC TURING MACHINE



- TAPE OF UNBOUNDED LENGTH
- HEAD CAN READ, WRITE, MOVE LEFT, MOVE RIGHT
- # IS THE BLANK SYMBOL
- ALL BUT A FINITE NUMBER OF SQUARES ARE BLANK

2

FORMAL DEFINITIONS FOR TMs



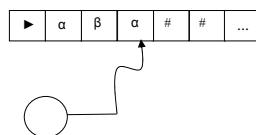
A DETERMINISTIC TM IS A 5-TUPLE $(K, \Sigma, \delta, s, H)$

WHERE

- K IS A FINITE SET OF STATES
- Σ IS AN ALPHABET
 - CONTAINING THE BLANK SYMBOL $\#$
 - NOT CONTAINING THE LEFT END SYMBOL \blacktriangleright
 - NOT CONTAINING THE MOVE SYMBOLS \rightarrow AND \leftarrow (MOVE RIGHT AND LEFT)
- $s \in K$ IS THE START STATE
- $H \subseteq K$ IS THE SET OF HALTING STATES
- δ IS THE TRANSITION FUNCTION, A FUNCTION FROM $(K - H) \times (\Sigma \cup \{\blacktriangleright\})$ TO $K \times (\Sigma \cup \{\leftarrow, \rightarrow\})$
SUCH THAT $\delta(q, \blacktriangleright) \in K \times \{\rightarrow\}$ FOR ALL $q \in K - H$

3

FORMAL DEFINITIONS FOR TMs



- TM TRANSITION FUNCTION $(K - H) \times (\Sigma \cup \{\blacktriangleright\})$ TO $K \times (\Sigma \cup \{\leftarrow, \rightarrow\})$

→ MEANS "MOVE RIGHT"

← MEANS "MOVE LEFT"

BUT \rightarrow AND \leftarrow ARE NOT SYMBOLS OF THE ALPHABET

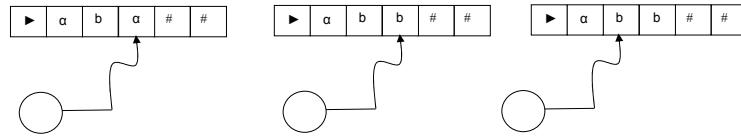
- THE BLANK SYMBOL $\#$ IS PART OF EVERY ALPHABET

- THE LEFT ENDMARKER \blacktriangleright INDICATES THE LEFT END OF THE TAPE
(IT CANNOT BE WRITTEN TO ANY OTHER SQUARE OF THE TAPE)

- FOR ANY STATE $q \in K$, THERE IS A q' SUCH THAT $\delta(q, \blacktriangleright) = (q', \rightarrow)$
THAT IS THE HEAD ALWAYS MOVES BACK ON THE TAPE IF IT FALLS OFF

4

FORMAL DEFINITIONS FOR TMs



MOVES OF A TM

- A TM CANNOT MOVE THE HEAD LEFT AND REWRITE A TAPE-SQUARE IN ONE STEP

EXAMPLES:

$\delta(q, a) = (p, b)$ WHERE $b \in \Sigma$ MEANS

"REWRITE a AS b IN THE CURRENT SQUARE AND LEAVE THE HEAD AT THE SAME PLACE"

$\delta(q, b) = (p, \leftarrow)$

MEANS "MOVE THE HEAD LEFT WITHOUT WRITING ANYTHING ON THE TAPE "

(WITHOUT LOSS OF POWER AN TM CAN WRITE AND MOVE IN TWO STEPS)

5

EXAMPLE OF A TM

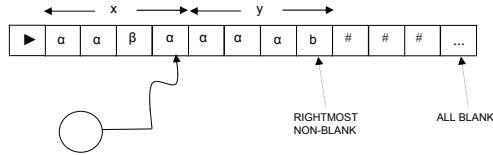
q	σ	$\delta(q, \sigma)$
q_0	a	(q_0, \leftarrow)
q_0	$\#$	$(h, \#)$
q_0	\blacktriangleright	(q_0, \rightarrow)

- THE TABLE DESCRIBES A TM THAT SCANS TO THE LEFT UNTIL IT FINDS A BLANK AND THEN HALTS

(THE MACHINE GOES INTO A LOOP IF A BLANK SQUARE CANNOT BE FOUND)

6

FORMAL DEFINITIONS FOR TMs



A CONFIGURATION OF A TM $(K, \Sigma, \delta, s, h)$

LOOKS LIKE $(q, \triangleright x, y)$

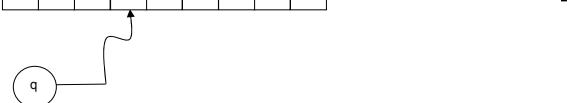
WHERE q IS THE CURRENT STATE AND THE TAPE LOOKS LIKE THE ONE ABOVE

- THE HEAD IS OVER THE RIGHTMOST SYMBOL OF $\triangleright x$
IF $x = \epsilon$ (THE EMPTY STRING) THEN THE HEAD IS OVER THE LEFT END OF THE TAPE
- y EXTENDS TO THE RIGHTMOST NON-BLANK
IF $y \neq \epsilon$ THEN THE HEAD IS TO THE RIGHT OF THE RIGHT MOST NON-BLANK OF x

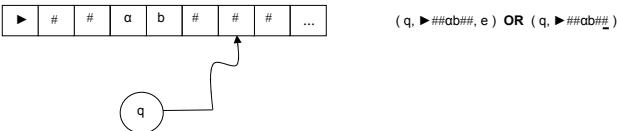
7

EXAMPLES OF CONFIGURATIONS OF A TM

$(\triangleright, \# \# \# a, b) \text{ OR } (\triangleright, \# \# \underline{a} b)$



$(\triangleright, \# \# ab \# \#, \epsilon) \text{ OR } (\triangleright, \# \# ab \# \#)$



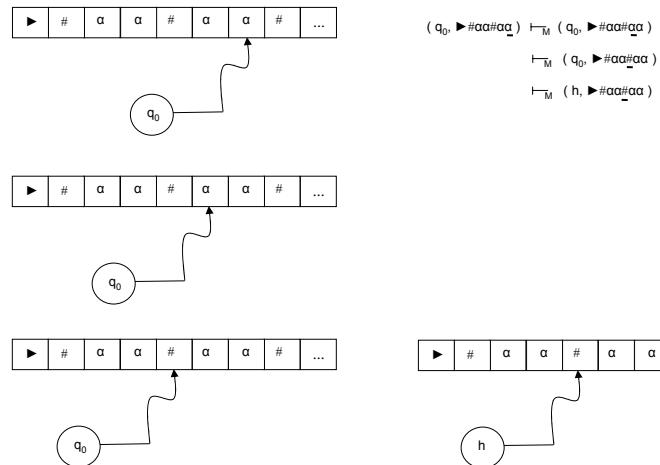
$(\triangleright, \# \# ab) \text{ OR } (\triangleright, \# \# ab)$

(THE HEAD IS OVER THE LEFT END)

8

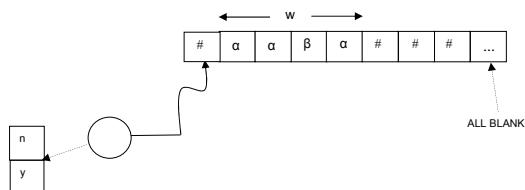
EXAMPLE OF CONFIGURATIONS OF A TM

LET M BE THE MACHINE THAT SEARCHES FOR A BLANK TO THE LEFT OF THE CURRENT SQUARE



9

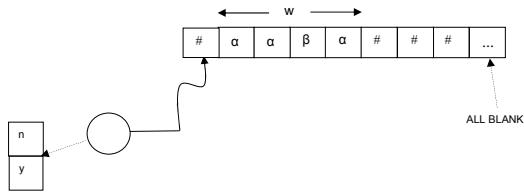
HOW TMS ARE USED?



- AS LANGUAGE RECOGNIZERS, OR DECISION PROCEDURES
i.e. TO ANSWER QUESTIONS OF THE FORM:
 $w \in L ?$
- FOR THIS PURPOSE A TM HAS TWO HALTING STATES: y AND n
- THE TM IS STARTED FOR INPUT THE STRING w (STRING w MUST NOT CONTAIN BLANKS)
AND HALTS IN STATE y OR n
DEPENDING ON WHETHER $w \in L$ OR $w \notin L$

10

DECIDING A LANGUAGE

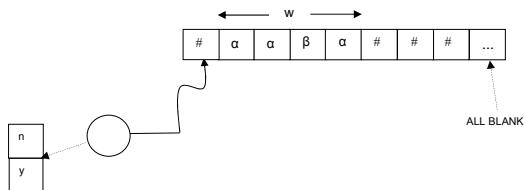


LET A DETERMINISTIC TM $M = (K, \Sigma, \delta, s, H)$
WHERE $H = \{y, n\}$

- A CONFIGURATION WITH STATE y IS ACCEPTING
- A CONFIGURATION WITH STATE n IS REJECTING
- LET $\Sigma_0 \subseteq \Sigma$ BE AN ALPHABET NOT CONTAINING $\#$
- M ACCEPTS $w \in \Sigma_0^*$ IFF $(s, \triangleright \# w)$ YIELDS AN ACCEPTING CONFIGURATION
- M REJECTS w IFF $(s, \triangleright \# w)$ YIELDS A REJECTING CONFIGURATION

11

THE RECURSIVE LANGUAGES

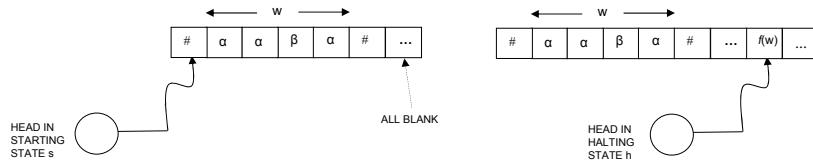


THE MACHINE M DECIDES THE LANGUAGE $L \subseteq \Sigma_0^*$ IFF FOR ANY STRING $w \in \Sigma_0^*$
 $w \notin L$ IFF M ACCEPTS THE STRING w
 $w \in L$ IFF M REJECTS THE STRING w

- A LANGUAGE L IS RECURSIVE IFF THERE IS A TM THAT DECIDES IT
(NO GUARANTEES ABOUT WHAT THE MACHINE MAY DO IF THE INPUT IS INSERTED IMPROPERLY)
- QUESTION: HOW MANY RECURSIVE SETS ARE THERE?
ANSWER: COUNTABLY MANY BECAUSE THERE ARE DECIDED BY TMS WHICH ARE FINITE

12

USING TMS TO COMPUTE FUNCTIONS



TMS ARE OFTEN USED TO COMPUTE FUNCTIONS

LET f BE A FUNCTION $\Sigma_0^* \rightarrow \Sigma_1^*$
 A TM M COMPUTES f IFF FOR ANY $w \in \Sigma_0^*$
 $(s, \triangleright \# w) \xrightarrow{*_M} (h, \triangleright \# \# \# \dots \# f(w))$

THAT IS, IF

- THE ARGUMENT IS WRITTEN ON THE LEFT END OF A BLANK TAPE,
PRECEDED BY ONE BLANK
- THE HEAD IS PLACED ON THE BLANK (JUST LEFT TO THE ARGUMENT)
- AND THE MACHINE IS STARTED IN ITS START STATE s , THEN
THE MACHINE EVENTUALLY HALTS WITH THE VALUE ON OTHERWISE BLANK TAPE

13

THE CLASS OF RECURSIVE FUNCTIONS

A FUNCTION $f: \Sigma_0^* \rightarrow \Sigma_1^*$ IS RECURSIVE IF THERE IS AN TM THAT COMPUTES IT

- A FUNCTION FROM NUMBERS TO NUMBERS IS RECURSIVE IF
THE STRING FUNCTION ON THEIR BINARY NOTATIONS IS RECURSIVE

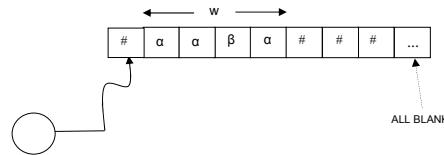
LET $\text{NUM} = 1 \{0, 1\}^* \cup \{0\}$ BE THE SET OF BINARY NUMERALS
 AND $\text{num}: \mathbb{N} \rightarrow \text{NUM}$ BE THE FUNCTION THAT CONVERTS NUMBERS TO NUMERALS
 (e.g. $\text{num}(7) = '111'$)

THEN

- A FUNCTION $f: \mathbb{N} \rightarrow \mathbb{N}$ IS RECURSIVE IFF
THE FUNCTION f' IS RECURSIVE, WHERE $f'(\text{num}(n)) = \text{num}(f(n))$ FOR EVERY $n \in \mathbb{N}$

14

RECURSIVELY ENUMERABLE SETS (RE) – SEMIDEIDING A LANGUAGE



LET $M = (K, \Sigma, \delta, s, H)$ BE A TM
 AND LET $\Sigma_0 \subseteq \Sigma$ BE AN ALPHABET NOT CONTAINING #
 ALSO, LET $L \subseteq \Sigma^*$

THEN, M SEMIDEIDES L IFF FOR ANY $w \in \Sigma_0^*$,

- $w \in L$ IFF M HALTS ON INPUT w
 (AND SO IF $w \notin L$, M DOES NOT HALT WHEN STARTED ON THIS INPUT)
- THE LANGUAGE L IS RECURSIVELY ENUMERABLE (RE) IFF THERE IS A TM THAT SEMIDEIDES THE SET L

15

SOME USES OF TMS

- TO DECIDE A RECURSIVE SET
- TO COMPUTE A RECURSIVE FUNCTION

} ALWAYS HALTS

- TO SEMIDEIDE AN RE SET
- TO COMPUTE A PARTIAL RECURSIVE FUNCTION

} MAY NOT HALT

- NOT EVERY TM DECIDES A LANGUAGE OR COMPUTES A RECURSIVE FUNCTION
 (EXAMPLE: A TM THAT NEVER HALTS)

- AS LONG AS $\Sigma_0 \subseteq \Sigma - \{\#\}$, (WHERE Σ_0 IS AN ALPHABET NOT CONTAINING #)
 THERE IS ASSOCIATED WITH M AN RE SET $\subseteq \Sigma_0^*$ IT SEMIDEIDES

16

A PROGRAMMING NOTATION FOR TMS

TURING MACHINES CAN BE COMBINED.
 INDIVIDUAL MACHINES BECOME STATES CONNECTED TO EACH OTHER.
 A MACHINE MAY START WHEN A PREVIOUS ONE HALTS.
 THE MACHINNE STARTS FROM ITS INITIAL STATE WITH THE TAPE AND HEAD POSITION AS THEY WERE LEFT BY THE FIRST MACHINE

$>M_1 \rightarrow M_2$
 • " EXECUTE M_1 UNTIL IT WOULD HALT;
 THEN BEGIN M_2 "

$>M_1 \xrightarrow{\alpha} M_2$
 • " EXECUTE M_1 UNTIL IT WOULD HALT;
 IF THE HEAD IS OVER AN α ,
 THEN BEGIN M_2 "

$>M_1 \xrightarrow{\alpha} M_2$
 $b \downarrow$
 M_3
 • " EXECUTE M_1 UNTIL IT WOULD HALT;
 IF THE HEAD IS OVER AN α , BEGIN M_2
 ELSE IF THE HEAD IS OVER A b INITIATE M_3 "

17

A PROGRAMMING NOTATION FOR TMS

EXAMPLES CONTINUE:

\bar{a} "...ANYTHING BUT a ..."
 R "MOVE RIGHT ONE SQUARE AND HALT"
 L "MOVE LEFT ONE SQUARE AND HALT"
 a "WRITE THE SYMBOL a "

$>M_1 \xrightarrow{\bar{a}} M_2$
 • " EXECUTE M_1 UNTIL IT WOULD HALT;
 IF THE HEAD IS OVER TO ANYTHING BUT a , BEGIN M_2 "

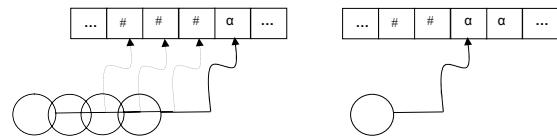
$>R \xrightarrow{\bar{a}}$
 • " SEARCH TO THE RIGHT FOR AN a " R_a

$>L \xrightarrow{\#}$
 • " SEARCH TO THE LEFT FOR A NON-BLANK SQUARE $L_{\#}$

$>R_a \rightarrow R_a$
 • " SEARCH TO THE RIGHT FOR THE SECOND a " R_a^2

18

A PROGRAMMING NOTATION FOR TMS

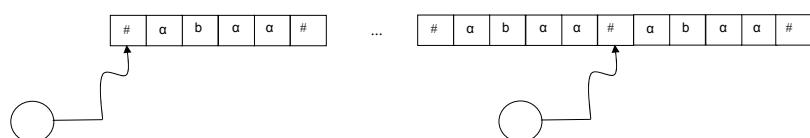


$\begin{matrix} \nearrow & \searrow \\ R & \xrightarrow{\sigma \neq \#} & L \sigma \\ \curvearrowleft & \curvearrowright \end{matrix}$

- " SEARCH TO THE RIGHT FOR A NONBLANK SQUARE,
THEN WRITE THAT SYMBOL IN THE SQUARE JUST TO THE LEFT OF WHERE IT WAS FOUND "

19

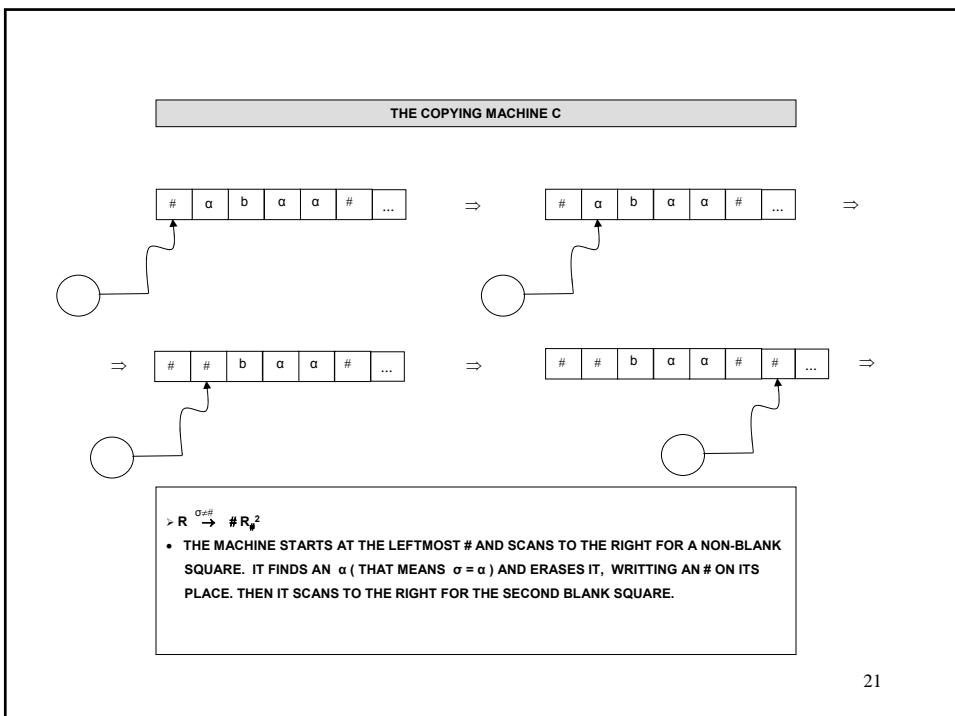
THE COPYING MACHINE C



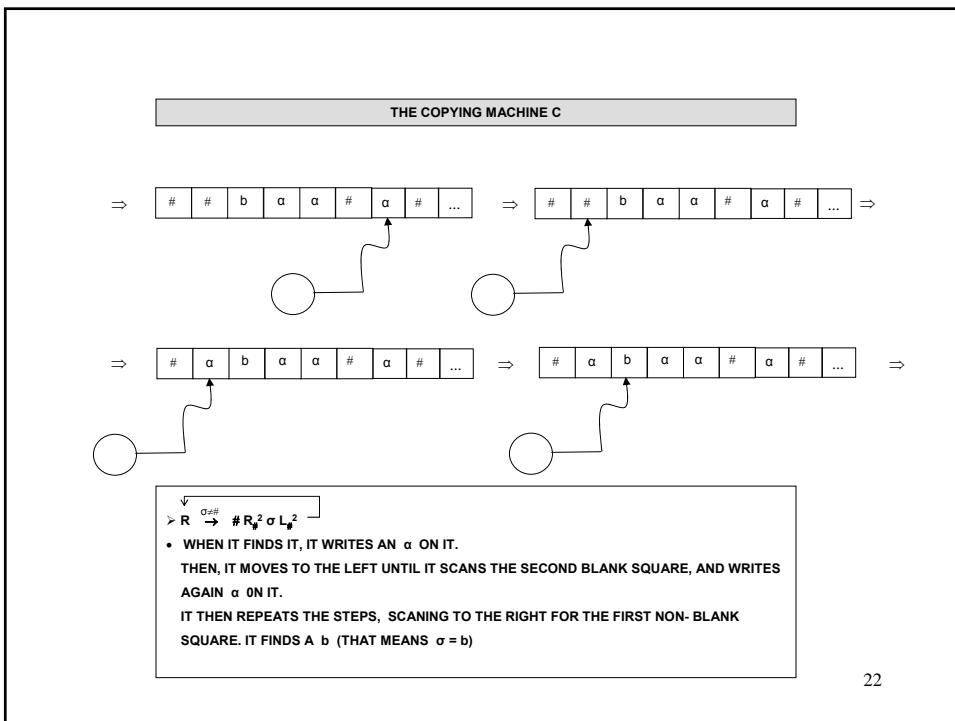
$\begin{matrix} \downarrow & \nearrow \\ \searrow & \nearrow \\ R & \xrightarrow{\sigma \neq \#} & \# R, \sigma^2 \sigma L, \sigma^2 \sigma \\ \downarrow & \downarrow \\ \# & \# \end{matrix}$

- THE MACHINE STARTS WITH SOME INPUT w ON AN OTHERWISE BLANK TAPE.
EVENTUALLY THE MACHINE STOPS WITH $\# w \# w \#$ ON ITS OTHERWISE BLANK TAPE.
(IT TRANSFORMS $\# w \#$ INTO $\# w \# w \#$)

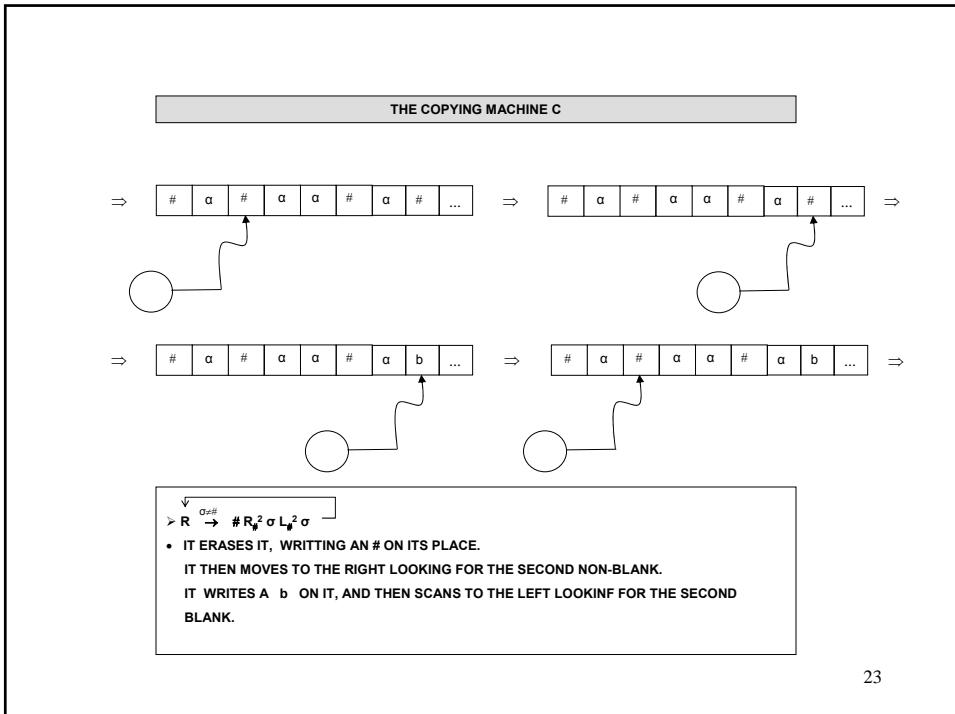
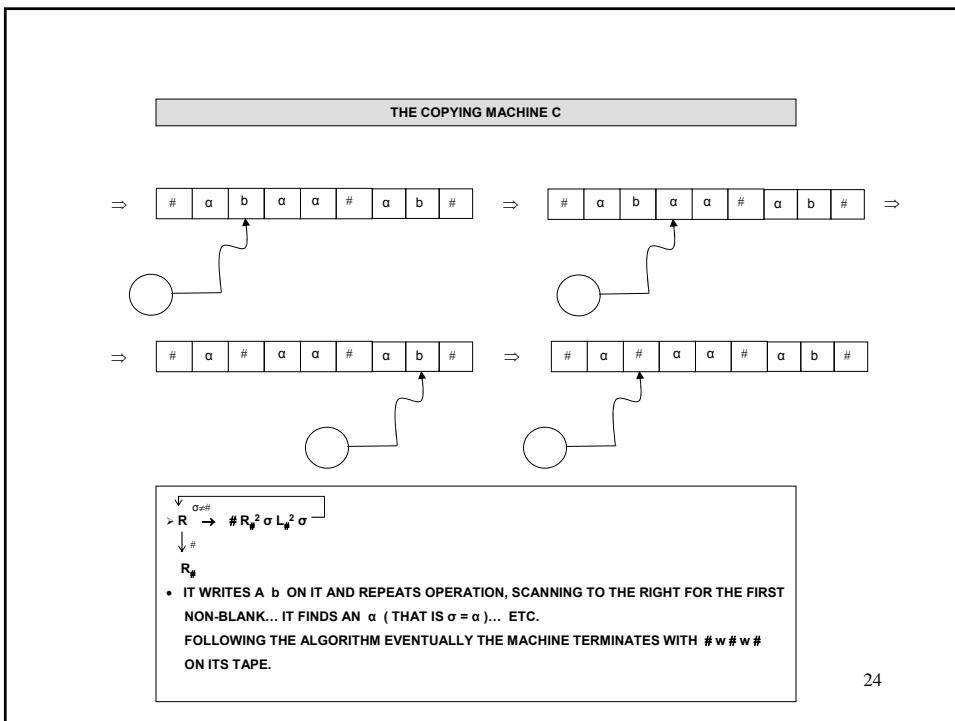
20



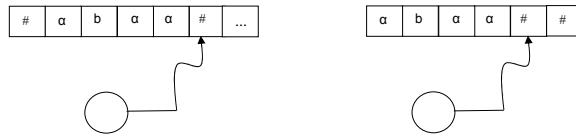
21



22



THE LEFT-SHIFTING MACHINE S_L



$\triangleright L_\# \rightarrow R \xrightarrow{\sigma \#} L \sigma R$
 $\downarrow \#$
 $L\#$

- THE MACHINE STARTS WITH SOME INPUT $\# w \#$ ON THE TAPE.
- EVENTUALLY STOPS WITH $w \#$ MOVING THE STRING w ONE BLANK TO THE LEFT.
- NOTE THAT THE S_L MACHINE DOES NOT CARE IF THE BLANK SQUARE TO THE LEFT IS THE LEFTMOST SQUARE OF THE TAPE.

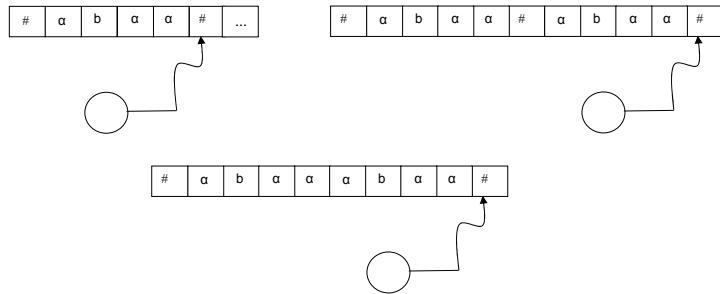
ACCORDINGLY A COMBINATION OF MACHINES CAN COMPUTE THE FUNCTION $f(w) = ww$

$\triangleright C S_L$

$\triangleright C R_\# S_L L_\#$

25

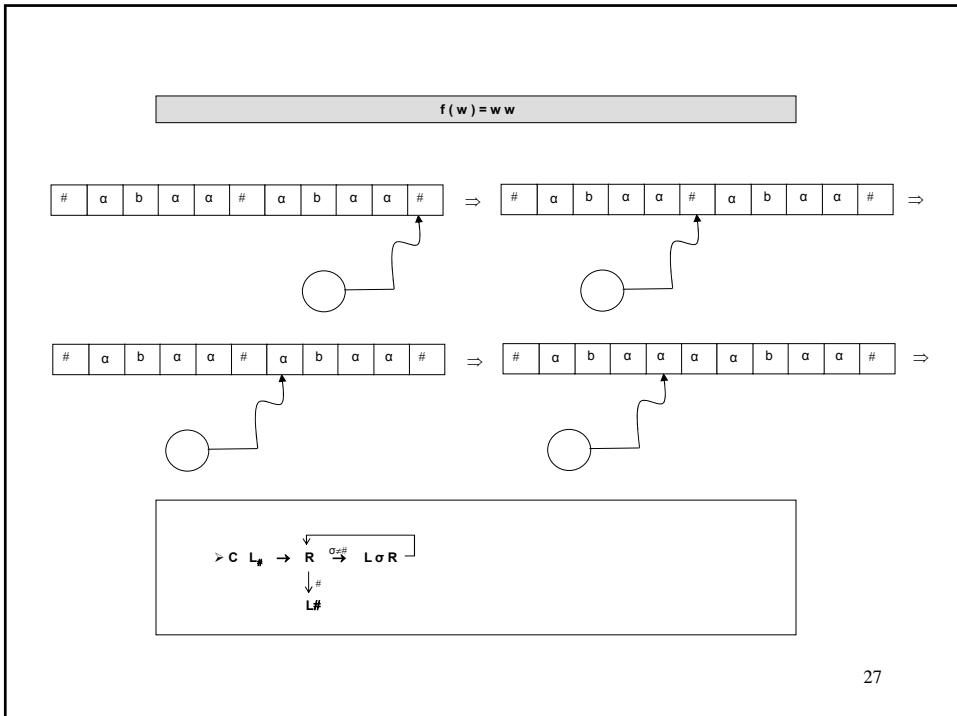
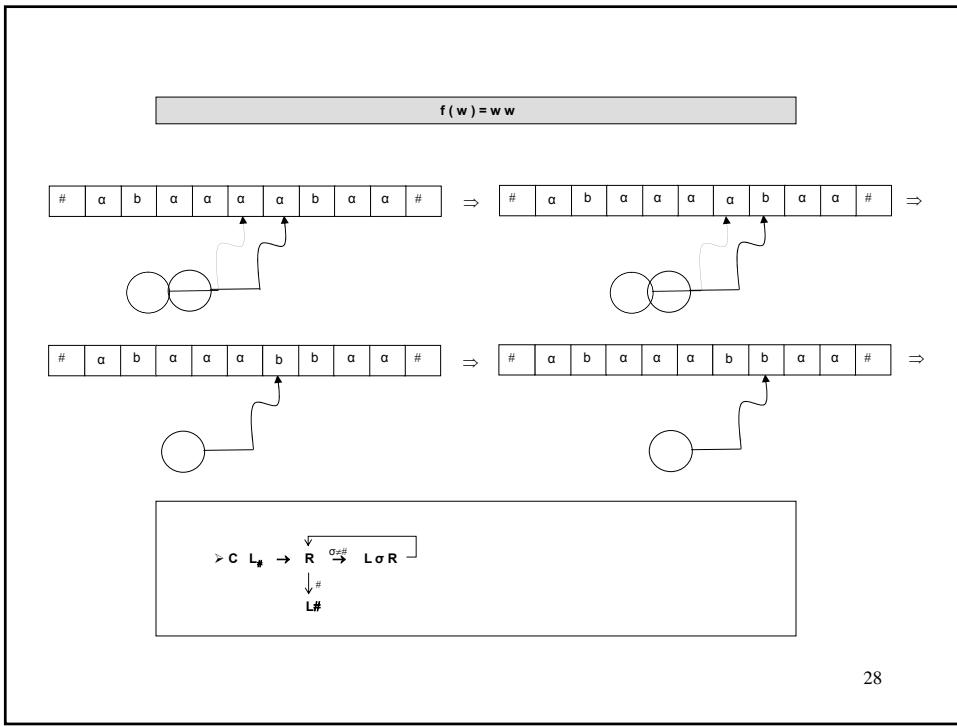
COMPUTING THE FUNCTION $f(w) = ww$



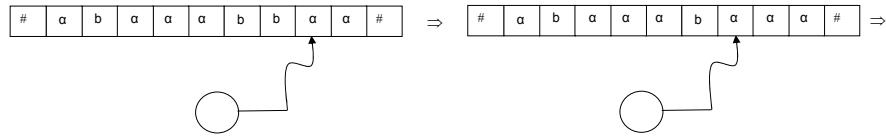
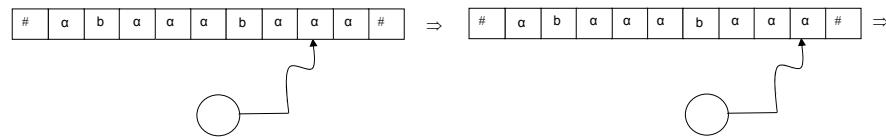
THE COMBINATION OF THE MACHINES C AND S_L COMPUTES THE FUNCTION $f(w) = ww$

$\triangleright C S_L$

26



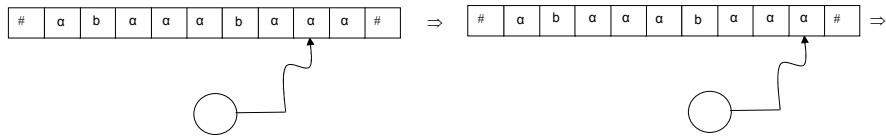
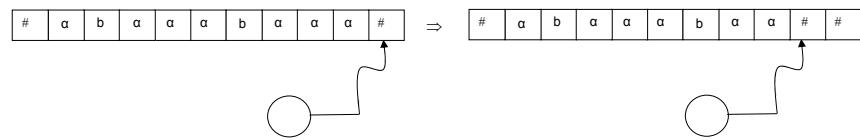
$$f(w) = ww$$



$$c \ L_{\#} \rightarrow \begin{array}{c} \swarrow \\ R \end{array} \xrightarrow{\sigma \text{ shift}} \begin{array}{c} \searrow \\ L \sigma R \end{array} \downarrow \# L\#$$

29

$$f(w) = ww$$



$$c \ L_{\#} \rightarrow \begin{array}{c} \swarrow \\ R \end{array} \xrightarrow{\sigma \text{ shift}} \begin{array}{c} \searrow \\ L \sigma R \end{array} \downarrow \# L\#$$

30